

Disclaimer

This presentation ("Presentation") has been prepared by Larus Energy Limited ("Larus" or the "Company") as a presentation to the RIU Good Oil Conference. The Presentation is a summary only and does not contain all the information about the Company's assets and liabilities. This material may be given in conjunction with an oral presentation and other more detailed documents and should not be taken out of context. While management has taken every effort to ensure the accuracy of the material in the Presentation, the Presentation is provided for information purposes only. No representation or warranty, express or implied, is or will be made by Larus Energy or its officers, directors, employees or advisers as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in, or implied by, this Presentation or any part of it. The Presentation may include information derived from third party sources that has not been independently verified. To the extent permitted by law, the Company and its officers, employees, agents and advisors do not accept liability to any person for any direct indirect or consequential loss or damage arising from the use of this material.

This Presentation does not constitute investment, legal, taxation or other advice and the Presentation does not take into account your investment objectives, financial situation nor particular needs. Neither this Presentation nor the information contained in it constitute an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. Investors and potential investors should not rely on this Presentation. This Presentation does not take into account any person's particular investment objectives, financial resources or other relevant circumstances and the opinions and recommendations in this Presentation are not intended to represent recommendations of particular investments to particular persons.

All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. The information set out in this Presentation does not purport to be all inclusive or to contain all the information which its recipient may require in order to make an informed assessment of the Company. You are responsible for forming your own opinions and conclusions on such matters and should make your own independent assessment of the information contained in, or implied by, this Presentation and seek independent professional advice in relation to such information and any action taken on the basis of the information.

Forward Looking Information

This Presentation contains forward looking and other subjective information. Forward-looking statements can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. Indications of, and guidance on, production targets, targeted output, development or timelines, exploration or expansion timelines, infrastructure alternatives and financial position and performance are also forward-looking statements. Such expectations, estimates, projections and information involve known and unknown risks and uncertainties and may involve significant elements of subjective judgment and assumptions as to future events which may or may not be correct, and actual results and developments will almost certainly differ from those expressed or implied and you should make your own assessment of the expectations, estimates, projections and the relevant assumptions and calculations upon which the opinions, estimates and projections are based. Any forecast or other forward-looking statements contained in this Presentation are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Larus Energy. There can be no assurance that actual outcomes will not differ materially from these statements. The forward-looking statements included in this Presentation involve subjective judgment and analysis and are subject to significant business, economic and competitive uncertainties, risks and contingencies, many of which are outside the control of, and are unknown to Larus Energy. Given these uncertainties, you are cautioned not to place undue reliance on forward-looking statements. These forward-looking statements are based on information available to Larus Energy as of the date of this Presentation. Except as required by law or regulation the Company does not undertake any obligation to update or revise any information or any of

Larus Energy Limited – an Asian story

Larus Energy Limited is an Australian public unlisted petroleum exploration company with 2 assets:

Torres Basin, Papua New Guinea Onshore and offshore

PPL 326

Area: 16,752km²

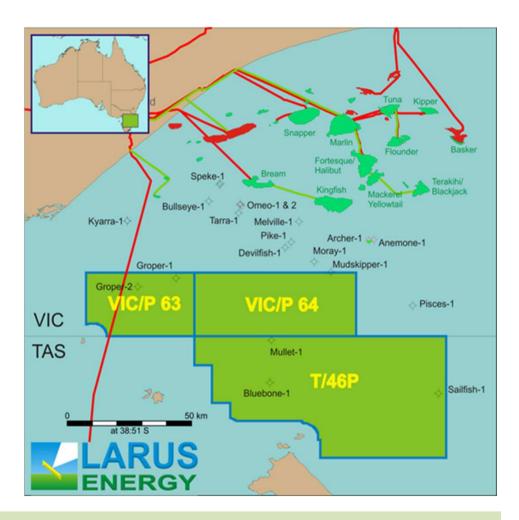
100% Larus

Gippsland Basin, Australia Offshore

VIC/P63, VIC/P64 and T/46P

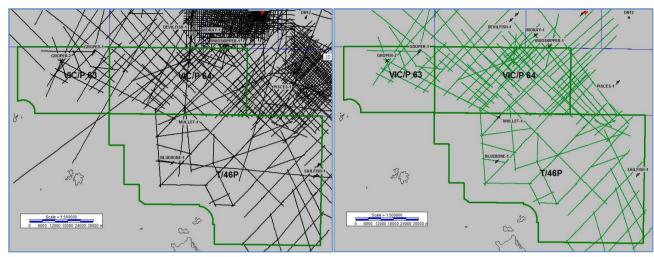
Area: approx. 8,300km²

100% Larus



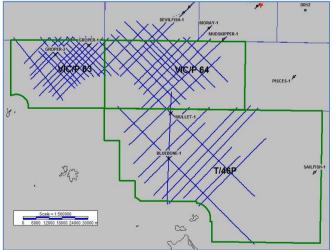
Gippsland highlights

Gippsland Basin, Australia


- Offshore Gippsland Australia's most prolific oil producing basin
- Significant existing infrastructure in place
- Located on southern flank of the Gippsland Basin, Australia's most prolific oil producing basin
- Targeting structural and stratigraphic traps of the Latrobe Group
- Large underexplored area, prospective for shallow water hydrocarbons

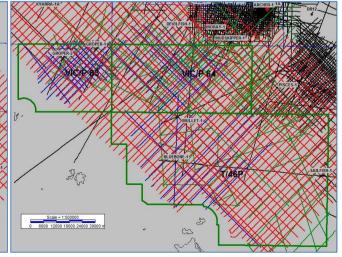
Underexplored acreage in Australia's most prolific oil and gas basin

Perception changed with new modern 2D dataset



Existing Pre-2010 dataset

4000km Reprocessing

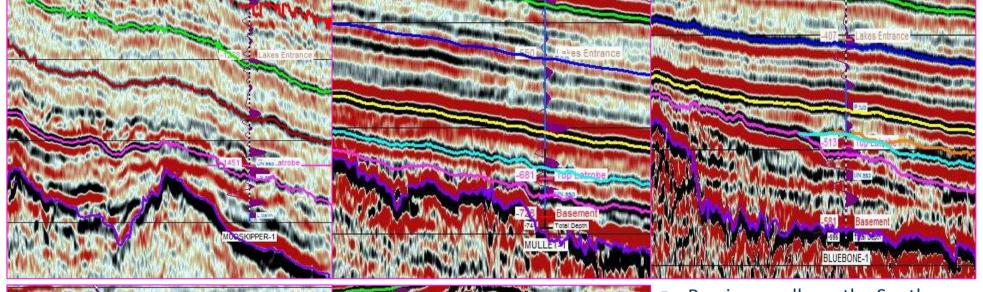

- A change in technology or the addition of a new dataset can completely transform the prospectivity of the basin
- The acquisition of modern
 2D seismic data in 2010 has done exactly this for the southern flank of the
 Gippsland Basin

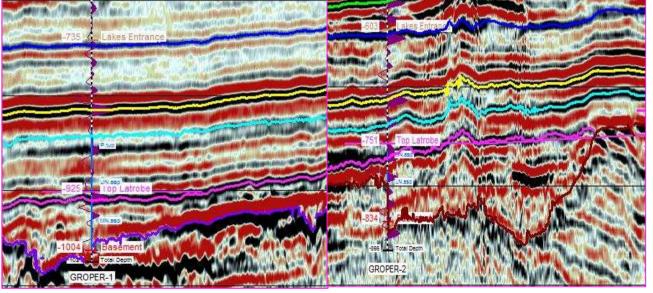
1500km 'Furneaux' acquisition


8000km VIC-DPI 'Southern Flanks' acquisition

Complete modern 2D dataset

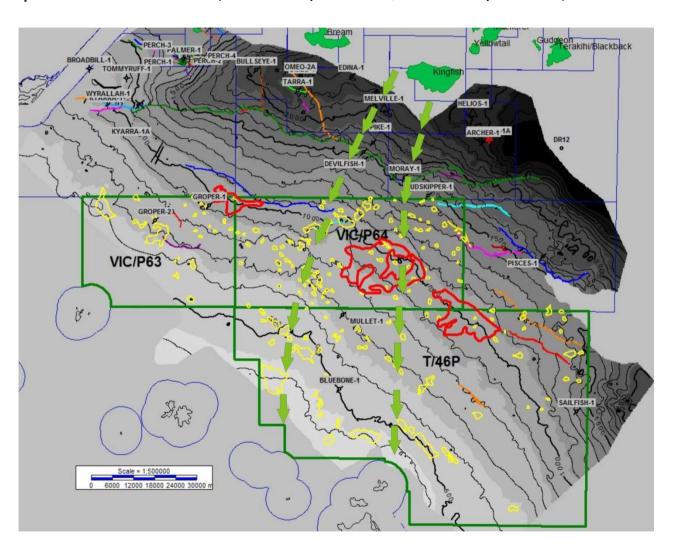
HRDZs demonstrate presence of hydrocarbons





and competent topseal

Previous wells – no trap, hence no shows



- Previous wells on the Southern Platform (Mudskipper-1, Mullet-1, Groper-1, Groper-2 and Bluebone-1) are all seen to have not tested valid traps
- All wells encountered excellent quality Latrobe reservoir
- The fact that none of the wells had any hydrocarbon shows is therefore not unexpected

Prospects and Leads

Prospects and Leads - (Yellow -Top Latrobe; Red - Early Eocene)

Dominant
Hydrocarbon
Migration Pathways
(Green arrows) from
Kingfish 'kitchen'
area southwards
across Permit Areas

Leads Inventory

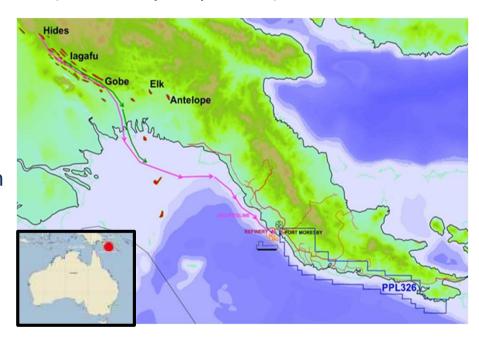
Leads - Top Latrobe Play

Permit	Lead Name	Тгар Туре	Area (Sq Km)	Column Height (metres)	STOOIP (mmbbls)	Quality	Chance of Success %
	VP63-TLat-003	Pinchout	19.459	96	431.4115	Weak	6
	VP63-TLat-001	Pinchout	19.535	70	289.4581	Weak	6
	VP63-TLat-002	Pinchout	2.420	35	8.5755	Weak	
VIC/P63	VP63-TLat-004	4-way	1.472	22	7.5841	Weak	
	VP63-TLat-021	4-way	2.413	12	6.5887	Weak	
	VP63-TLat-023	4-way	2.292	9	5.1640	Fair	6
	VP64-TLat-002	Pinchout	9.871	137	56.9406	Weak	26
VIC/P64	VP64-TLat-014	Pinchout	4.681	110	54.2002	Fair	26
	VP64-TLat-004	Pinchout	7.020	32	40.6251	Weak	26
	VP64-TLat-001	4-way	3.369	42	24.6637	Weak	16
	VP64-TLat-056	Pinchout	2.683	15	17.7372	Weak	10
	VP64-TLat-003	Pinchout	3.532	124	13.5023	Weak	26
	VP64-TLat-027	Pinchout	2.065	22	9.4436	Weak	10
	VP64-TLat-005	Pinchout	1.261	56	5.1808	Weak	
	VP64-TLat-016	Pinchout	3.416	52		Weak	21
	T46P-TLat-003	Pinchout	35.691	89	778.4995	Fair-Strong	11
	T46P-TLat-066	Pinchout	16.988	54	594.9320	Strong	13
	T46P-TLat-056	Pinchout	16.761	52	180.5308	Fair	10
	T46P-TLat-004	4-way	11.845	10	42.3336	Strong	24
T/46P	T46P-TLat-002	4-way	4.241	18	26.7232	Strong	20
1/46P	T46P-TLat-054	Pinchout	4.639	21	26.0285		
	T46P-TLat-011	Pinchout	6.926	77	19.2144	Very Weak	
	T46P-TLat-001	4-way	5.025	12	15.1780	Strong	20
	T46P-TLat-007	4-way	2.116	10	5.0645		

Leads Inventory

Leads - Intra-Latrobe Play (Early Eocene)

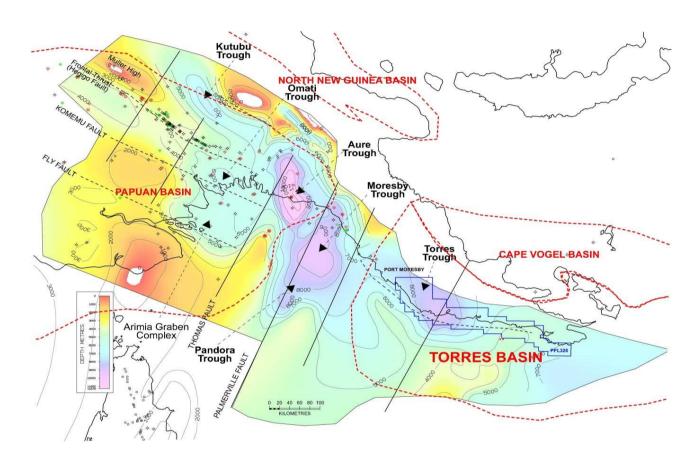
Permit	Lead Name	Trap Type	Area (Sq Km)	Column Height (metres)	STOOIP (mmbbls)	Quality	Chance of Success
VIC/P63	VP63-EEoc-001 (Downdip Groper)	Pinchout	45	100	630	Strong	11%
VIC/P64	VP64-EEoc-001 (SW Mudskipper)	Pinchout	176	270	3875	Strong	11%
T/46P	T46P-EEoc-001 (East Mullet)	Pinchout	101	75	1817	Fair	9%


- The majority of P&Ls lie in water depths between 50 and 60 metres
- These are depths well suited to jack-up drilling rigs
- Target depths range from 330m to 1500m
- Drilling Total Depths into basement range from 400m to 1600m

PNG - PPL 326

PPL 326

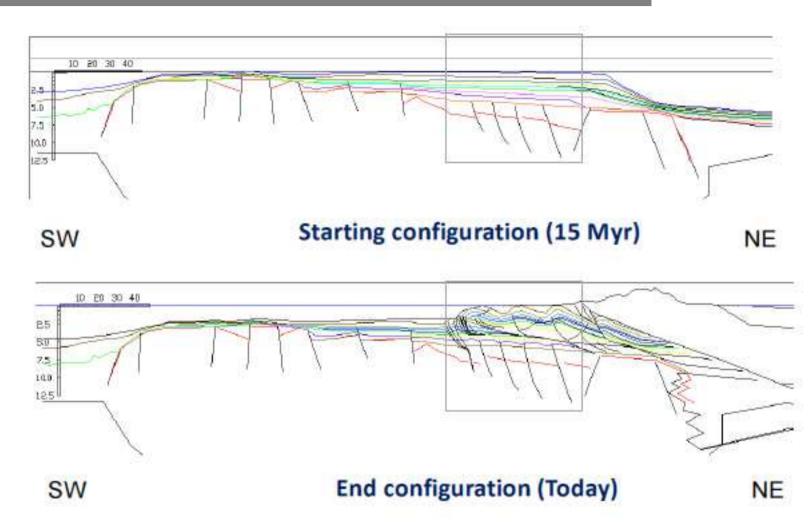
- Awarded 27 August 2009 for a six year permit period (three x 2 year periods)
- Currently in years 3 and 4 (Period 2)
- PNG Government committed to growing oil and gas sector
- Attractive fiscal and taxation regime and favourable regulatory environment – exploration and development legislation with similar work commitment obligations to Australia
- Supportive local community and landowners, with regular consultation undertaken
- Location, terrain and infrastructure makes this area easier to operate in



New PNG basin

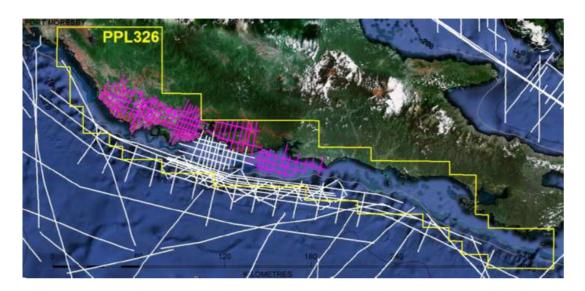
PPL 326

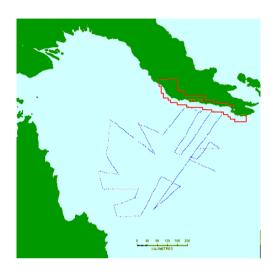
- Newly identified basin (the Torres Basin)which is tantamount to a buried Highlands
- Contains its own kitchen
- The interpretation concludes that a Mesozoic petroleum system containing both source and reservoir is likely to exist.
- All known existing plays in the Papuan can be demonstrated in the Torres Basin
- At least 11plays to be pursued
- Key play risked at 40%, key Prospect risked at 9%

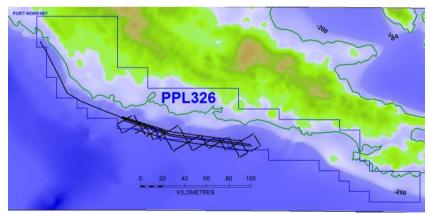


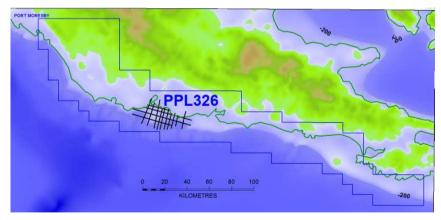
New Basin uncovered covering twice the Highlands area

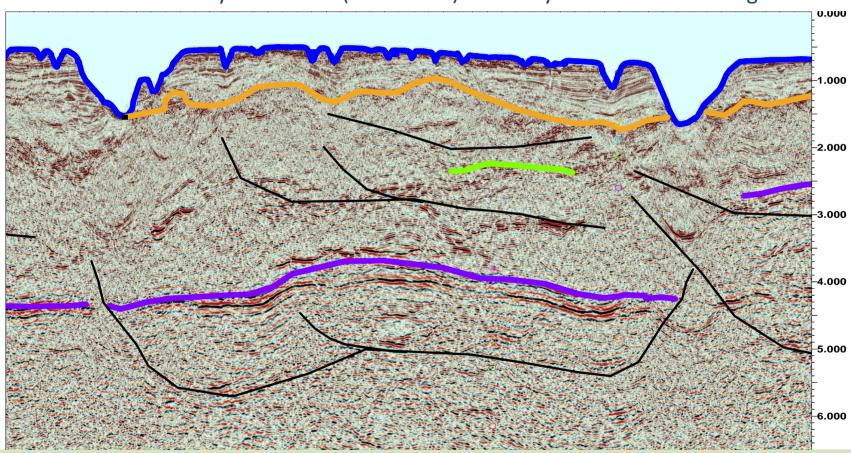
Structural History of the north PNG coast


PPL 326




New Basin covered by over-thrust sheets

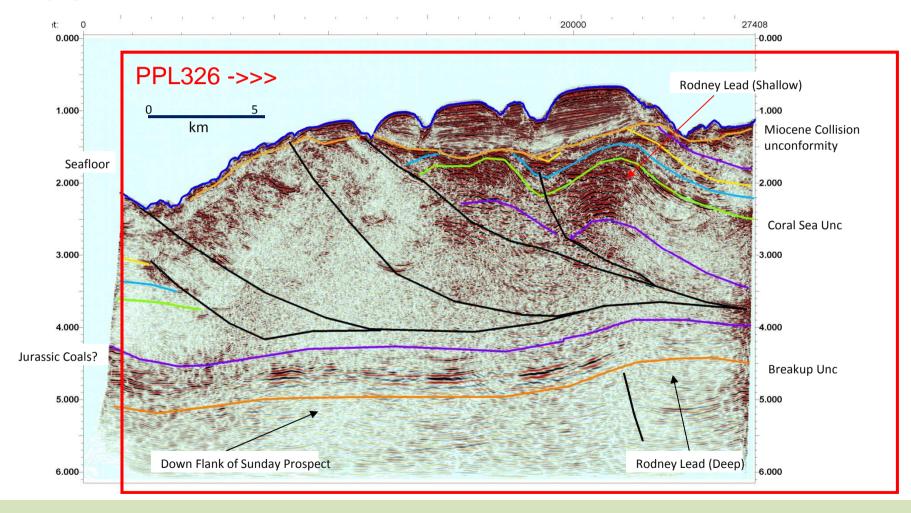

The Company advantage


Larus is the only company to have reviewed ALL data relevant to PPL 326

The start of the hunt!

PPL 326

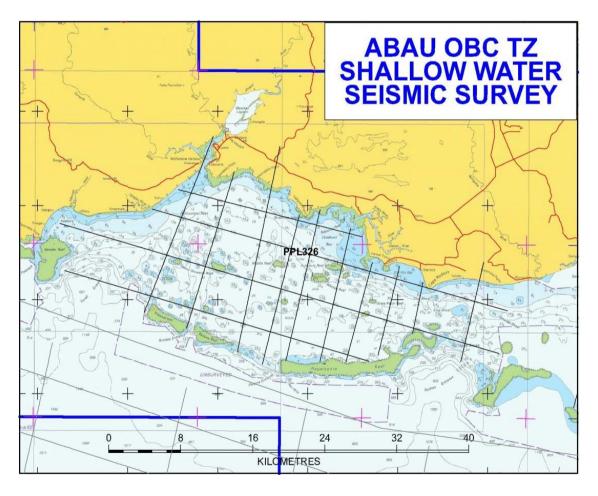
Fugro Lahara Seismic Survey L06-131P1 (Final Stack) - Sunday Anticline 40km long!



The seismic line that started the 'elephant' hunt

Technical work highlights world-class potential

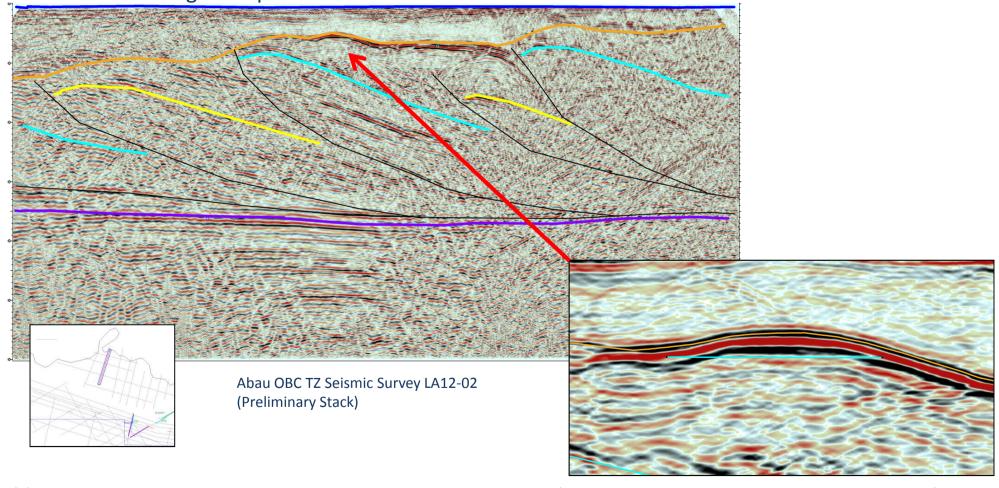
PPL 326


Recent seismic survey showed PPL 326 amounts to a 'buried highlands'

Technical work highlights world-class potential

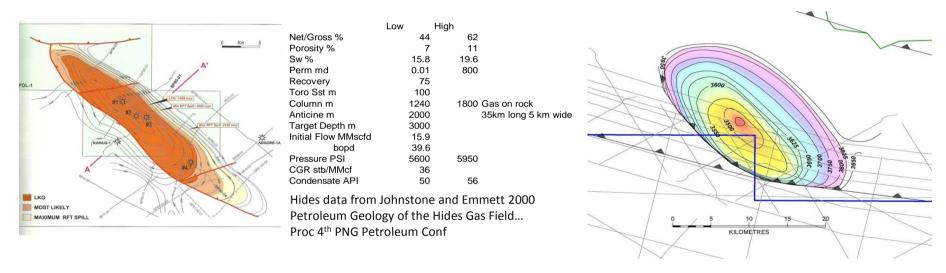
PPL 326

- Abau shallow water transition 2D seismic survey recently completed
- Data just been processed and interpretation being finalised
- Maturing existing leads and prospects
- Adding new leads, prospects and plays
- Produced a direct hydrocarbon indicator – better than an oil seep
- Shows the formers hills now buried
 under 800m of mud
- Further unlocks the story



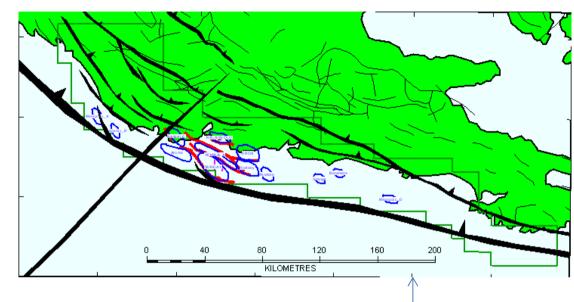
Every time we touch it, PPL 326 just gets better

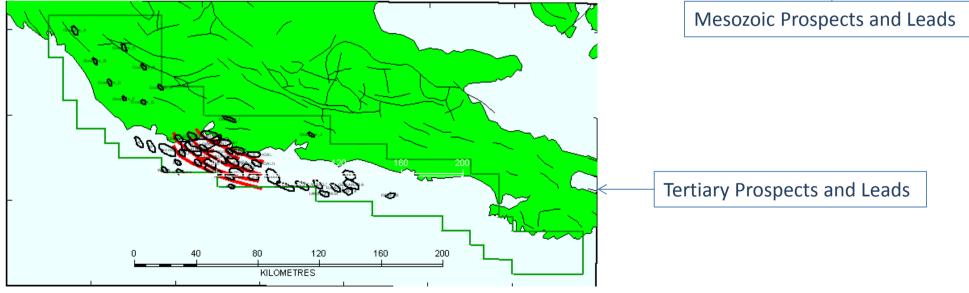
PPL 326


■ The 'Holy Grail' of seismic exploration and usually a direct indication of gas in the system. The lack of oil and gas seeps at the surface is now understood

Sunday Prospect

- Field Analogy Hides (Papuan Basin):
 - Hides: 5.7TCF gas and 100mmbbls condensate recoverable,
 - o Sunday: 9.4TCF gas and 148mmbbls condensate recoverable
- Unrisked resource of 9Tcf and 150 mmbbls oil a must drill!


	AREA	AREA	HEIGHT	GRV	GEOMETRIC	GRV	net	POROSITY	So	1/Bo	OIL/GAS	OIIP/GIIP	Recovery		
	acre	KM*KM	FEET		FACTOR	MM m cub	gross	%	%	[]	%		factor		
Hides	43209	175	300	16002	0.80	12801	0.55	0.10	0.82	1.0000	0.03	101	1.00	101	OIL MMBBLS
Hides	43209	175	300	16002	0.80	12801	0.55	0.10	0.82	0.0025	1.00	8155	0.70	5709	GAS BCF
		OIP =6.2	28983 *	GRV * P	Phi * So *1/	Bo [MMI	obls]								
		GIP=0.0	0353*GR	RV*Phi*So	o*1/Bo [BC	F]									
Sunday	69135	280	300	18797	1.00	18797	0.55	0.10	0.82	1.0000	0.03	148	1.00	148	OIL MMBBLS
Sunday	69135	280	300	18797	1.00	18797	0.55	0.10	0.82	0.0022	1.00	13472	0.70	9430	GAS BCF

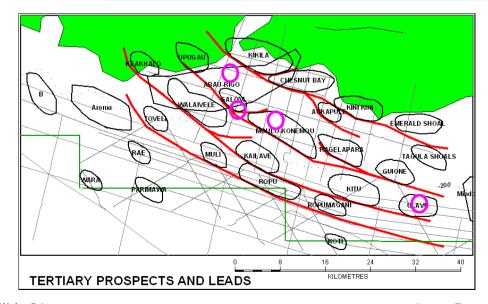

Prospects and leads

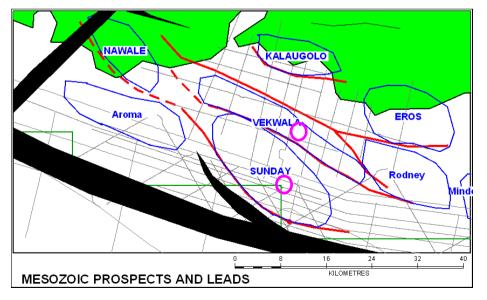
PPL 326

- Seismic data has initially identified 50 leads/prospects – just the beginning
- Aggregate unrisked resource –
 92 TCF gas in place and 1500
 MMbbls oil in place

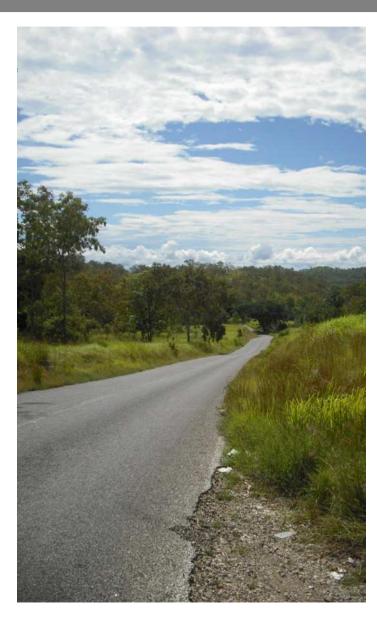
Prospects and leads

Resource	Estimates based on s	seimsic data	a GRV and	avergae Pa	OIIP	GIIP		
		I	W	h	(3% Vol)		Status	Play Type
		km	km	msec	[MMbbls]	BCF		
TERTIARY	Α						Weak Lead	Tertiary Clastics
TERTIARY	AROMA(shallow)	9	3	40	13	335	Weak Lead	Tertiary Clastics
TERTIARY	AUKAPULE	4	2	70	7	174	Strong Lead	Tertiary Clastics
TERTIARY	В						Weak Lead	Tertiary Clastics
TERTIARY	CHESNUT BAY	11	4	30	15	410	Strong Lead	Tertiary Clastics
TERTIARY	EAST	4	3	30	4	112	Strong Lead	Tertiary Clastics
TERTIARY	EMERALD SHOALS	8	3				Weak Lead	Tertiary Clastics
TERTIARY	GALOVI	5	2	40	5	124	Prospect	Tertiary Clastics
TERTIARY	GENANAMA	6	4	40	11	298	Weak Lead	Tertiary Clastics
TERTIARY	GUIONE	7					Weak Lead	Tertiary Clastics
TERTIARY	IANAMA VAGI	5	6	10	3	93	Strong Lead	Tertiary Clastics
TERTIARY	KAILAVE	9	5				Weak Lead	Tertiary Clastics
TERTIARY	KEAKKALO	6	3	100	21	559	Weak Lead	Tertiary Clastics
TERTIARY	KIKI KINI	9	4	40	17	447	Strong Lead	Tertiary Clastics
TERTIARY	KIKILA	12	5	40	28	745	Strong Lead	Tertiary Clastics
TERTIARY	KITU	10	4	100	46	1242	Strong Lead	Tertiary Clastics
TERTIARY	KOTI	4	2				Weak Lead	Tertiary Clastics
TERTIARY	Mindora(Shallow)	8	4	80	30	795	Weak Lead	Tertiary Clastics
TERTIARY	MOULO-KONEMOU	14	5	80	65	1739	Prospect	Tertiary Clastics
TERTIARY	MULI	6	3				Weak Lead	Tertiary Clastics
TERTIARY	RAE	5	3				Weak Lead	Tertiary Clastics
TERTIARY	PAKA	7	5				Weak Lead	Tertiary Clastics
TERTIARY	PARIMAWA	6	3				Weak Lead	Tertiary Clastics
TERTIARY	PASSAGE	5	2	60	7	186	Weak Lead	Tertiary Clastics
TERTIARY	RAGELAPARA	9	4	60	25	671	Strong Lead	Tertiary Clastics
TERTIARY	RAWALI	5	5	20	6	155	Weak Lead	Tertiary Clastics
TERTIARY	REEF_A						Weak Lead	Miocene Reef
TERTIARY	REEF_B						Weak Lead	Miocene Reef
TERTIARY	ROPU	6	3	130	27	727	Strong Lead	Tertiary Clastics
TERTIARY	ROPUMAGANI	6	3	130	27	727	Strong Lead	Tertiary Clastics
TERTIARY	ROTHERY	8	3	80	22	596	Strong Lead	Tertiary Clastics
TERTIARY	TAGULA SHOALS	7	3				Weak Lead	Tertiary Clastics
TERTIARY	TOVELI	5	3				Weak Lead	Tertiary Clastics
TERTIARY	ULAVU	7	4	100	33	870	Prospect	Tertiary Clastics
TERTIARY	UPAGAU	7	3				Weak Lead	Tertiary Clastics
TERTIARY	ABAU-RIGO	17	7	20	44	818	Prospect	Karst Eocene Lmst
TERTIARY	WALAIVELE	13	4	100	60	1615	Strong Lead	Tertiary Clastics
TERTIARY	WARA	5	3				Weak Lead	Tertiary Clastics


The Tertiary fairways are developing into a attractive alternate exploration option. Though smaller than the deeper Mesozoic targets there are targets over 1 TCF and many of them. They are in shallow water and at target depth less than 2000 metres.


Prospects and leads

Resource	Estimates based	on seimsic dat	GIIP						
		I	W	h	(3% Vol)		Status	Play Type	,
		km	km	msec	[MMbbls]	BCF			
MESOZOIC	Α	14	4	86	56	4188	Weak Lead	Mesozoic	Clastics
MESOZOIC	В	7	2	223	36	2715	Weak Lead	Mesozoic	Clastics
MESOZOIC	D								
MESOZOIC	AROMA	16	3	100	56	4174	Strong Lead	Mesozoic	Clastics
MESOZOIC	SUNDAY	20	8	200	160	13472	Prospect	Mesozoic	Clastics
MESOZOIC	RODNEY	18	8	100	167	12522	Strong Lead	Mesozoic	Clastics
MESOZOIC	MINDORA	8	5	100	46	3478	Strong Lead	Mesozoic	Clastics
MESOZOIC	GRANGE	8	5	63	29	2191	Weak Lead	Mesozoic	Clastics
MESOZOIC	BARAMATA	8	7	30	20	1461	Weak Lead	Mesozoic	Clastics
MESOZOIC	NAWALE	10	5	100	58	4348	Weak Lead	Mesozoic	Clastics
MESOZOIC	VEKWALA	32	5	100	186	13914	Prospect	Mesozoic	Clastics
MESOZOIC	KALAUGOLO	16	7	100	130	9740	Strong Lead	Mesozoic	Clastics
MESOZOIC	EROS	14	6	100	98	7305	Weak Lead	Mesozoic	Clastics
	Totals		esource	source in Plac		erminis	1558	92949	
							OIIP	GIIP	
							[MMbbls]	BCF	



Contact

Larus Energy Limited

David Williams

Managing Director

david@larusenergy.com.au

t: +61 2 8215 1515

m: +61 419 779 250

www.larusenergy.com.au

